
TECHNICAL REPORT SPRGTV-TR001 SPRG – TOR VERGATA

System Programming Research Group

Dept. of Computer Science, System and Industrial Engineering

University of Rome “Tor Vergata”

Operating System’s Support

for Multicore Systems:

Current and Future Trends

24/04/2007

E. Betti, D. P. Bovet, M. Cesati, R. Gioiosa

REVISIONS
Rev Date Notes

0 29/03/2007 First version
1 24/04/2007 Minor revision

OS support for multicore chips (rev. 1) 24/04/2007 Page 1 of 12

http://www.sprg.uniroma2.it/
http://www.disp.uniroma2.it/
http://www.uniroma2.it/


TECHNICAL REPORT SPRGTV-TR001 SPRG – TOR VERGATA

Introduction

Hardware trends

In the quest for the highest CPU performances, hardware developers are faced
with a difficult dilemma. On one hand, the Moore’s Law does not apply to com-
putational power any more, that is, computational power is no longer doubling
every 18 months as in the past. On the other hand, power consumption continues
to increase more than linearly with the number of transistors included in a chip,
and the Moore’s Law still holds for the number of transistors in a chip.

Several technology solutions have been adopted to solve this dilemma. Some of
them try to reduce the power consumption by sacrificing computational power,
usually by means of frequency scaling, voltage throttling, or both. For instance,
the Intel Centrino processor [1] has a variable CPU clock rate ranging between
600 MHz and 1.5 GHz, which can be dynamically adjusted according to the com-
putational needs.

Other solutions try to get more computational power from the CPU without in-
creasing power consumption. For instance, a key idea was to increase the Instruc-
tion Level Parallelism (ILP) inside a processor; this solution worked well for some
years, but nowadays the penalty of a cache miss (which may stall the pipeline) or
of a miss-predicted branch (which may invalidate the pipeline) has become way
too expensive.

Chip-Multi-Thread (CMT) [2] processors aim to solve the problem from another
point of view: they run different processes at the same time, assigning them re-
sources dynamically according to the available resources and requirements. His-
torically the first CMT processor was a coarse-grained multithreading CPU (IBM
RS64-II [3, 4]) introduced in 1998: in this kind of processor only one thread ex-
ecutes at any instance. Whenever that thread experiments a long-latency delay
(such as a cache miss), the processor swaps out the waiting thread and starts to
execute the second thread. In this way the machine is not idle during the memory
transfers and, thus, its utilization increase.

Fine-grained multithreading processors improve the previous approach: in this
case the processor executes the two threads in successive cycles, most of the time
in a round-robin fashion. In this way the two threads are executed at the same
time but, if one of them encounters a long-latency event, its cycles are lost. More-

OS support for multicore chips (rev. 1) 24/04/2007 Page 2 of 12



TECHNICAL REPORT SPRGTV-TR001 SPRG – TOR VERGATA

over, this approach requires more hardware resources duplication than the coarse-
grained multithreading solution.

In Simultaneous MultiThreading (SMT) processors two threads are executed at the
same time, like in the fine-grained multithreading CPUs; however, the processor is
capable of adjusting the rate at which it fetches instructions from one thread flow
or the other one dynamically, according to the actual environmental situation. In
this way, if a thread experiments a long-latency event, its cycles will be used by
the other thread, hopefully without loosing anything.

Yet another approach consists of putting more processors on a chip rather than
packing into a chip a single CPU with a higher frequency. This technique is called
chip-level multiprocessing (CMP), but it is also known as “chip multiprocessor”;
essentially it implements symmetric multiprocessing (SMP) inside a single VLSI
integrated circuit. Multiple processor cores typically share a common second- or
third-level cache and interconnections.

In 2001 IBM introduced the first chip containing two single-threaded processors
(cores): the POWER4 [5]. Since that time, several other vendors have also in-
troduced their multicore solutions: dual-core processors are nowadays widely
used (e.g., Intel Pentium D [6], AMD Opteron [7], and Sun UltraSPARC IV [8]
have been introduced in 2005); quad-core processors are starting to appear on the
shelves (Intel Pentium D [9] was introduced in 2006 and AMD Barcelona will
appear in late 2007); eight-core processors are expected in 2008.

In 2005 IBM, in collaboration with Sony and Toshiba, introduced the Cell Broad-
band Engine (CBE) microprocessor [10, 11]. Cell is a heterogeneous chip mul-
tiprocessor that consists of a 64-bit PowerPC core and eight specialized SIMD
co-processors called Synergistic Processor Units (SPU). The cores are connected
by means of a on-chip bus. The Cell processor is aimed at data-intensive pro-
cessing, like that found in cryptography, media, and scientific applications. The
Cell processor is the main computational unit of the Sony’s PlayStation 3 game
computer, thus it is expected that IBM will invest significant efforts and resources
in this architecture.

Multi-core chips will become ubiquitous in the next few years. It has been fore-
seen [12] that in a near future even many embedded systems will sport multicore
chips, because the small increase in power consumption will likely be justified by
the large increment of computational power available to the embedded system’s
applications. Furthermore, the actual trend in the design of system-on-chip de-
vices suggests that in a near future such chips will include multicore processors.

OS support for multicore chips (rev. 1) 24/04/2007 Page 3 of 12



TECHNICAL REPORT SPRGTV-TR001 SPRG – TOR VERGATA

Therefore, the embedded system designers will be able to create boards having
many processors almost “for free”, that is, without the overhead of a much more
complicated electronic layout or a much higher power consumption.

OS support for multicore chips

Operating systems must evolve in order to fully support the new multithreading
and multicore CPUs. Current operating systems, in fact, basically consider each
virtual processor or omogeneous core as a separate, independent CPU—these sys-
tems are thus handled like classic multiprocessor platforms. However, the OS does
not reckon that virtual processors and cores often share critical hardware resources
inside a chip. Therefore, the OS may fail in fully exploiting the capabilities of the
system.

For instance, in a system sporting two dual-core chips and running two CPU-
bounded processes, the OS may end up assigning the processes to the two cores
on the same chip, while the cores on the other chip remains idle: because the cores
in the same chips contend for some resources—hardware caches, for instance—
the two processes are not executed at the maximum speed that the system would
allow.

For another instance, if the OS would be aware of the peculiar hardware character-
istics of each processing unit in the system, it could schedule the active processes
in such a way to achieve the best compromise between required performances and
system’s power consumption.

Heterogeneous multicore chips lead to even bigger problems. At the present, no
operating system at all natively supports heterogeneous cores. This means that
user applications must directly program these cores, without any help from the
operating system. It is not surprising that programming these heterogeneous cores
is a tedious, error-prone, and heavy job.

ASMP-LINUX

ASMP-LINUX, ASymmetric MultiProcessor Linux, is an extension of the Linux R©

operating system kernel that can be used in multiprocessor and multicore systems

OS support for multicore chips (rev. 1) 24/04/2007 Page 4 of 12



TECHNICAL REPORT SPRGTV-TR001 SPRG – TOR VERGATA

with hard real-time requirements. It has been originally developed as a patch for
the 2.4 Linux kernel series in 2002 [13]. After several revisions and major updates,
it is now implemented as a patch for the Linux kernel 2.6.19.1. ASMP-LINUX

is released under the version 2 of the GNU General Public License [14], and it is
available to all developers who wish to work with it.

ASMP-LINUX provides real-time capabilities while maintaining the software ar-
chitecture relatively simple. In a conventional (symmetric) kernel, I/O devices
and CPUs are considered alike, since no assumption is made on the system’s load.
Asymmetric kernels, instead, consider real-time processes and related devices as
privileged and shield them from other system activities.

The main advantages offered by ASMP-LINUX to real-time applications are:

• Deterministic execution time (up to a few hundreds of nanoseconds).

• Very low system overhead.

• High performance and high responsiveness.

One of the design goals of ASMP-LINUX is simplicity: because Linux developers
introduce quite often significant changes in the kernel, it would be very difficult
to maintain the ASMP-LINUX patch if it would be intrusive or overly complex.
Actually, most of the code specific to ASMP-LINUX is implemented as an inde-
pendent kernel module, even if some minor changes in the core kernel code are
still required.

Another design goal of ASMP-LINUX is architecture-independency: the patch
can be easily ported to many different architectures, besides the IA-32 architecture
that has been adopted for its first implementation.

ASMP-LINUX is a vertically partitioned operating system; it implements two
different kinds of partitions: system partitions and real-time partitions. The sys-
tem partition executes all the non real-time activities, such as daemons, normal
processes, interrupt handling for non critical devices, and so on. Each real-time
partition handles some real-time tasks, as well as any hardware device and driver
that is crucial for the real-time performances of that tasks.

In an ASMP-LINUX system there is exactly one system partition, which may con-
sist of several processors, devices, and processes; moreover, there should always

OS support for multicore chips (rev. 1) 24/04/2007 Page 5 of 12



TECHNICAL REPORT SPRGTV-TR001 SPRG – TOR VERGATA

exist at least one real-time partition. Additional real-time partitions might also
exist, each handling one specific real-time application.

Each real-time partition consists of a processor (called shielded CPU, or shortly
S-CPU), nirq ≥ 0 IRQ lines assigned to that processor and corresponding to the
critical hardware devices handled in the partition, and ntask ≥ 0 real-time pro-
cesses (there could be no real-time process in the partition; this happens when the
whole real-time algorithm is coded inside an interrupt handler). The real-time par-
tition is protected from any external event or activity that does not belong to the
real-time task running on that partition. Thus, for example, no conventional pro-
cess can be scheduled on a shielded CPU and no normal interrupt can be delivered
to that processor.

To validate the claim that ASMP-LINUX provides a good foundation for an hard
real-time operating system on multiprocessor systems, we performed some exper-
iments aimed to measure the operating system overhead and latency of ASMP-
LINUX on a few typical multiprocessor platforms, including coarse-grained mul-
tithreading processors and multicore chips. The test results show that ASMP-
LINUX running on multi-processor and multicore machines is capable of mini-
mizing both operating system overhead and latency, thus providing deterministic
results for the tested applications.

A proposal for future researches

High performance multicore processors—particularly the heterogeneous ones—
are very complex chips, which often require entirely new programming models
and new optimization techniques. Therefore, programming these chips is, in gen-
eral, an hard task [15].

We propose to adapt the Linux operating system kernel in such a way to natively
support homogeneous and heterogeneous multicore chips so as to:

• offer to the programmer an easy, general programming model, regardless of
the hardware characteristics of the cores

• increase the system’s overall performances by exploting the computational
power of specialized cores

OS support for multicore chips (rev. 1) 24/04/2007 Page 6 of 12



TECHNICAL REPORT SPRGTV-TR001 SPRG – TOR VERGATA

• reduce the system’s power consumption when the system is running on low-
charged batteries or the system load is low

ASMP-Linux for homogeneous and
heterogeneous multicore chips

In order to achieve these goals, we plan to extend the basic concepts of ASMP-
LINUX. The new operating system will be based on Linux and will be open
source, available for the scientific community.

We think that ASMP-LINUX is a good starting point because of its notion of
“vertically partitioned hardware resources”: the user may freely change the logical
processors included in each partition, as well assign processes and IRQ lines—that
is, hardware devices—to any partition.

However, the current interface of ASMP-LINUX is cumbersome and not very in-
tuitive. Since all the system programmers know how to use resources such as files,
serial ports, audio cards, and so on, the first change to ASMP-LINUX will consist
in making the hardware resources included in the partitions available as general
resources, that is, through the well-established POSIX file interface. Thus, all
programmers who know how to use POSIX file operations will also be able to
exploit the cores in their processors.

Proposed implementation

When a real-time process is assigned to a real-time ASMP-LINUX partition, it
runs there until it is removed from that partition. Our proposal consists of ex-
tending the concept of “real-time process running on an asymmetric real-time
partition” to “critical procedure executed on an specific partition”.

The system is partitioned in one system partition and one or more specialized
partitions, where each partition may consists of several cores. The cores in the
specialized partitions are seen as resources capable of executing some specific
tasks. The operating system is aware of the available resources and it is in charge
of managing the resource pool of each specialized partition. The operating system
also handles the data communication channels between different cores.

OS support for multicore chips (rev. 1) 24/04/2007 Page 7 of 12



TECHNICAL REPORT SPRGTV-TR001 SPRG – TOR VERGATA

A user application can request a resource included in some specialized partition
where a specific procedure shall be executed. In order to do this, the process
requests the operating system a service; the operating system will take the pending
request—consisting of both the procedure code and the input parameters—and
will forward it to the best resource it has currently available in the partition’s pool.
Then, the process can wait for the procedure to complete (blocking operation) or
it can continue its execution while its request is being processed. In the latter case,
the operating system will notify the process as soon as the procedure running on
the specialized partition has completed.

Since the number of requests could be greater than the number of resources (cores)
in a specialized partition, the operating system implements a queue mechanism
similar to the Linux’s work-queue: when a new request comes, it is put into the
proper queue and served according to the queue policy (for example FIFO or
predefined priority).

Examples of applications

A typical example is a system where one specialized partition includes cores
aimed at vector-matrix multiplications. In this case, the procedures to be executed
on the specialized partition will likely be code fragments operating on vectors and
matrices. Thus, the process that is executing a user application remains on the
system partition, but it can require the execution of specific procedures on a spe-
cialized core. Once the procedure has been completed, the output results will be
returned to the calling process.

A specialized partition does not necessarily include heterogeneous cores: it might
be composed of general-purpose cores similar to the cores in the system partition.
The cores in this specialized partition might be used whenever the system load in-
creases, or when the user application must perform some kind of recurring, costly
operations.

For instance, whenever a user application allocates a new page of memory, the
operating system kernel must fill the page frame with zeros—otherwise the pro-
cess might get access to information owned by the process that previously owned
the page. Filling a page with zeros is a costly task, because it evicts from the
hardware caches a lot of cache lines. By demanding this task to a general-purpose
core in a specialized partition, the operating system may preserve the hardware
cache lines of the core in the system partition, thus potentially achieving higher

OS support for multicore chips (rev. 1) 24/04/2007 Page 8 of 12



TECHNICAL REPORT SPRGTV-TR001 SPRG – TOR VERGATA

performances.

Dynamic behaviour

A distinct characteristic of our proposed operating system extension is that the
cores can be dynamically added or removed in the partitions.

In some cases, in fact, it does not pay off to have many cores for specialized func-
tions. For instance, when the system load is high but few processes (or none at all)
need services from the specialized partitions, the specialized cores are mostly idle,
while the system cores are overloaded. In this case, if all cores are homogeneous,
it is convenient to remove some cores from the specialized partitions and add them
to the system partition, so that the overall performances of the system increase. In
the extreme case in which all specialized partitions are empty (no core assigned),
the system becomes a classical Symmetric MultiProcessor (SMP) platform.

Another typical case is when the system load is very low: some core can be re-
moved from a partition and turned off, thus saving power. As soon as the system
load increases, the operating system may decide to turn some core on and to add
it to the proper partition, according to the kind of the most required services.

In general, some cores might be turned off when there are few requests for the kind
of services they provide. This means that, in heterogeneous systems, a specialized
core could be turned off even if the system load is high, because few processes
need the service provided by the core. In fact, switching the core off would not
significantly affect overall performances but, at the same time, it will decrease
system’s power consumption.

However, is always up to the operating system to determine if and when turning a
core on or off, or moving homogeneous cores from a specialized partition to the
system partition, and so on. The correct choice will be taken at run-time looking at
the overall system statistics kept by the operating system (for example the number
of requests in each partition’s work-queue), in a way completely transparent to the
user.

OS support for multicore chips (rev. 1) 24/04/2007 Page 9 of 12



TECHNICAL REPORT SPRGTV-TR001 SPRG – TOR VERGATA

Interface

As we explained, our extension to the Linux operating system kernel will provide
a I/O POSIX-like interfaces.

Specifically, some device files will be available for the user, where each device
file will represent a specialized partition. The user can interact with a specialized
partition through the regular POSIX file operations:

open Notify the operating system that the process might request some services
from the specialized partition. This operation is like a registration. The
operating system will use the number of processes registered for using the
services of a specialized partition in order to dynamically adjust the number
of cores in the partition.

write Post a service request to the specialized partition.

read Obtain the output data produced by the procedure, or just check whether the
procedure has been completed.

poll Wait sinchronously until an event associated with a number of partitions
occurs—most likely, the termination of a procedure running on a special-
ized core.

close De-register the process from using the partition. If no process is using the
partition, the operating system may remove all the cores from the partition,
thus shutting the corresponding services down.

ioctl Implement all the features with a semantic that does not fit in the previous
operations (such as forcing the kernel to send a signal to the process when
a procedure running on a specialized core terminates).

Road map

Because the targets of this proposal are both homogeneous and heterogeneous
multicore chips, we plan to organize the future research work in two phases.

In the first phase, ASMP-LINUX will be modified so that it will be able to han-
dle the cores in the specialized partitions as resources available for the processes.

OS support for multicore chips (rev. 1) 24/04/2007 Page 10 of 12



TECHNICAL REPORT SPRGTV-TR001 SPRG – TOR VERGATA

This will be done on homogeneous multicore processors, so that it will not be nec-
essary to deal with different instruction sets or overly complex communicational
channels among the cores. Several homogeneous multicore processors are already
available on the market, thus this activity can start immediately.

In the second phase, the work done in the first phase will be adapted for hetero-
geneous multicore processors. We are expecting that most of the code developed
in the first stage will be architecture-independent, thus the main job in this phase
will consist in writing an architecture-dependent layer below the layer produced
in the first phase.

In order to understand how to write the architecture-dependent layer, some skills
on the real processors will be required. This activity can be done in parallel during
the first phase. Currently, the most powerful and widely available heterogeneous
multicore chip present on the market is the IBM Cell processor, thus we will focus
on this architecture.

However, one of our goals will be to make the porting the architecture-dependent
layer to new hardware as easier as possibile.

References

[1] Intel Corp., “Intel Core2 Duo Mobile Processor datasheet,” 2006. Avail-
able from http://download.intel.com/design/mobile/datashts/
31407801.pdf.

[2] H. M. Mathis, A. E. Mericas, J. D. McCalpin, R. J. Eickemeyer, and S. R. Kunkel,
“Characterization of simultaneous multithreading (SMT) efficiency in POWER5,”
IBM J. Res. Dev., vol. 49, no. 4/5, pp. 555–564, 2005.

[3] J. M. Borkenhagen, R. J. Eickemeyer, R. N. Kalla, and S. R. Kunkel, “A multi-
threaded PowerPC processor for commercial servers.,” IBM Journal of Research
and Development, vol. 44, no. 6, pp. 885–898, 2000.

[4] S. Storino, R. Eickemeyer, R. Kalla, and S. Kunkel, “A commercial multithreaded
RISC processor,” Digest of Papers, International Solid-state Circuits Conference,
pp. 236–237, 1998.

[5] J. M. Tendler, J. S. Dodson, J. S. F. Jr., H. Le, and B. Sinharoy, “POWER4 system
microarchitecture,” IBM Journal of Research and Development, vol. 46, no. 1, pp. 5–
26, 2002.

OS support for multicore chips (rev. 1) 24/04/2007 Page 11 of 12



TECHNICAL REPORT SPRGTV-TR001 SPRG – TOR VERGATA

[6] Intel Corp., “Intel Pentium D Processor 900 sequence and Intel Pentium Processor
Extreme Edition 955, 965 datasheet,” 2006. Available from http://download.
intel.com/design/PentiumXE/datashts/31030606.pdf.

[7] Advanced Micro Devices, “AMD OpteronTM Processor Product Data Sheet,” 2006.
Available from http://www.amd.com/us-en/assets/content type/
white papers and tech docs/23932.pdf.

[8] Sun Microsystems, “UltraSPARC R© IV Processor Architecture Overview,”
Feb. 2004. Available from http://www.sun.com/processors/
whitepapers/us4 whitepaper.pdf.

[9] Intel Corp., “Intel Quad-Core processors.” Available from http://www.intel.
com/quad-core/index.htm.

[10] M. Gschwind, P. Hofstee, B. Flachs, M. Hopkins, Y. Watanabe, and T. Yamazaki,
“A novel SIMD architecture for the Cell heterogeneous chip-multiprocessor,” Hot
Chips, vol. 17, Aug. 2005. Available from http://www.hotchips.org/
archives/hc17/2 Mon/HC17.S1/HC17.S1T1.pdf.

[11] M. Gschwind, P. Hofstee, B. Flachs, M. Hopkins, Y. Watanabe, and T. Ya-
mazaki, “Synergistic processing in Cell’s multicore architecture,” IEEE Micro,
Mar. 2006. Available from http://www.research.ibm.com/people/m/
mikeg/papers/2006 ieeemicro.pdf.

[12] P. McKenney, “SMP and embedded real-time,” Linux Journal, vol. 153, Jan. 2007.
Available from http://www.linuxjournal.com/article/9361.

[13] R. Gioiosa, “Asymmetric kernels for multiprocessor systems (in Italian),” October
2002. Master thesis, University of Rome “Tor Vergata”.

[14] Free Software Foundation, Inc., “GNU General Public License, version 2,” June
1991. Available from http://www.gnu.org/licenses/gpl2.html.

[15] D. Scarpazza, O. Villa, and F. Petrini, “Programming the Cell processor,” Dr. Dobb’s
Journal, pp. 26–30, Apr. 2007.

OS support for multicore chips (rev. 1) 24/04/2007 Page 12 of 12


